文/羊城晚报全媒体记者 陈辉
通讯员 简文杨 于田
图/受访者提供
腹膜转移被普遍认为是肠癌的终末期,预后很差。当前,诊断肠癌腹膜转移主要通过影像学手段的,敏感性欠缺,特别是对于5mm以下的微小腹膜转移病灶。
近日,中山大学附属第六医院结直肠外科研究团队和深圳腾讯AI lab开展合作,并成功开发出世界上第一个诊断肠癌腹膜转移的AI平台,能够自动识别原发肿瘤特征,同时提取肿瘤临近腹膜的影像学特征,构建基于人工智能的SVM分类器。
该AI模型仅需34秒就自动识别并诊断了所有验证图像,准确性高达94%,AUC为0.922,敏感性和特异性均高达94%。
肠癌合并同时性腹膜转移的发病率约为5-10%,复发时合并腹膜转移发病率为25-44%。“腹膜转移如果能够早期诊断,可以增加彻底减瘤手术的机会,未来能够明显延长肠癌患者的生存期。”中山六院王辉教授说。
2018年开始,该团队和深圳腾讯AI lab就建立了合作关系,研发了一个基于卷积神经网络(CNN)的ResNet3D系统,经查,这是世界上第一个诊断肠癌腹膜转移的AI平台,能够自动识别原发肿瘤特征,同时提取肿瘤临近腹膜的影像学特征,构建基于人工智能的SVM分类器。
训练组一共纳入了19814张CT图像,验证组包括了7837张CT图像。研究发现,ResNet3D的AI系统仅需花费34秒就自动识别并诊断了所有验证图像。
“ResNet3D+SVM分类器”的肠癌腹膜转移诊断的准确性高达94%,AUC为0.922,敏感性和特异性均高达94%,明显优于常规增强CT的诊断能力。
不仅能够自动识别原发肿瘤特征,还融合了周围临近腹膜的特征,临床实用性很强,为临床医生制订手术方案提供参考,也为肠癌患者选择合适的治疗提供依据。
据介绍,该AI平台可以识别其他医院或中心的影像学图像,因此下一步计划将该AI系统移植到其他医院,利用更大规模的独立队列,进行外部验证来证明其普遍适用性,努力解决肠癌腹膜转移癌诊断困难的世界性难题。(更多新闻资讯,请关注羊城派 pai.ycwb.com)
来源 | 羊城晚报·羊城派
责编 | 吴瑕